FT-727G
取扱説明書

八重洲無線株式会社
このたびはVAESU FT-727Gトランスシーバをお買上げいただきまして、まことにありがとうございます。

本製品は厳しい品質管理のもとで生産されておりますが、万一、運用中での事故などにともない、性能またはご不具合がございましたら、お早めにお問い合わせいただく度、販売店または販売の当社営業所サービスにお問い合わせください。

●お願い
正しい操作方法をご理解いただくために、お手数でも取扱説明書は最後までお読みくださるようお願いいたします。操作方法に誤りがありますと、本製品の性能が十分に発揮できず、思わぬトラブルや故障の原因になることがあります。

操作方法の誤りが原因で故障を生じた場合は保証期間中でも有限保証にさせていただくことがありますのでご注意ください。

●アフターサービス
万一故障のときはお問い合わせいただきました販売店、または最近の営業所サービスまでご連絡ください。営業所サービスステーションの所在地、電話番号をご取扱説明書の表紙に記載しております。

①保証期間はお買い上げの日より1年です。くわしくは取扱説明書をご覧ください。
②保証期間を通じて修理の場合、部品代の他に規定の手数料をいただきます。
③不良を扱う交換のため、部品だけをご希望になる場合には、お問い合わせの販売店にお申し込みになるか、販売の営業所サービスステーションまでお申し込みください。

希望をご希望の場合は現金またはご利用ください。品物だけでお渡しすることはできませんので、あらかじめご了承ください。

製品の役立つために、取扱説明書の文書が一部製品と異なることがあります。あらかじめご了承ください。
FMハンディトランシーバ

FT-727G

●軽量小型、軽量。ハバイパワーを実現

スチールハンディトランシーバーFT727Gは、世界初のCPU搭載デュアルバンドハンディトランシーバーである。この設計でコンパクトで軽量な高性能のデュアルバンドハンディトランシーバーを作成することができた。サイズは125x30x108.5mm、重量は600gと、またモジュール化された構成を採用したことにより、機能性と軽量性を兼ね揃えたデバイスを実現した。

●高性能CPUで多機能を実現

FT-727Gは高性能CPUを搭載して、ハンディトランシーバーのデジタル化を進めてきた。高性能なCPUを採用することで、パワーセーブ機能や多重機能を実現することができる。また、モジュール化された構成を採用することにより、機能性と軽量性を兼ね揃えたデバイスを実現することができた。

●パワーセーブ機能により省エネルギー

受信機の消費電力はCPU以外の電源を一定の周期にスリープして1秒〜10秒までの設定によってパワーセーブ機能を実現した。これによりパワーセーブ時の平均消費電流は約1.6mAに低下することが可能になりました。（0.1秒 受信/1秒 パワーセーブ）

●トーンエコー/エコ設内

レシーバーアクセス用のすべてのトーンエコードユニットPRT-E4を内蔵し、さらにオプションで電池点滅機能を追加できるトーンエコードユニットPRTS-E4を選択して利用できます。

●ハンズフリー・オペレーション

合音で通話時を自動的に切換えるVOX機能を内蔵しました。オプションのヘッドセッ
トYS-2と組み合わせて、スピーカーやマイクリングまで含む自由に使える“ハンズフリー・オペレーション”ができます。
1. VOL (POWER SWITCH)
電源スイッチ付の音量調整器です。反時計方向にまわし切った位置で電源スイッチが切れ、時計方向にまわすと電源が入ります。

2. SQL
受信信号の入力がないときのFM用のノイズを消すスケロネ調節器です。時計方向にまわすほどスケロネが深くなり、弱い信号でもスケロネが聞こえなくなります。通常はノイズが出る方より少し時計方向にまわした位置で使用しますが、目的外の信号でスケロネが聞きやすい場合にはスケロネを少し浅くするなど信号に応じて調節してください。
キー（高音）および LCD（液晶）表示器の
照明用ランプスイッチです。後部屋の所
などで使用するときにこのスイッチを押
して動作を確認できます。

ロックがオンの状態で外部電源を
使用してモニタ運用や固定運用などの
ような長時間使用するときは使用して,
ハントで使用するときは電池の消耗を
防ぐため必要なときだけご使用ください。

RF（HIGH, LOW）

送信出力をHIGHに、LOWに切り換
えるスイッチです。スイッチを押し込むと
ローパワーになり、近距離の通話な
どでは音を下げる電池の消耗を少なく
することできます。

アンテナ接続用の BNC カプラード
す。通常は付属のホイントアンテナ YHA-
27を直接取り付けます。条件やモニタ
ル運用等ではSHH系の外付けアンテナを
接続できます。

VOX

オプションのヘッドセット YH-2を使用
しVOX（オートペレーティョン）運用
を行うスイッチです。
注: 内部マイクおよびスピーカーマイクでは
VOX運用は行いません。
CAT
オプションのインターフェースユニークと接続してパーソナルコンピュータを
利用し各種のコントロールが行えます。

注）CAT端子に接続してイヤホンを接続
すると故障の原因になりますので十分
に注意ください。

EAR
イヤホンジャックです。イヤホンを使
用すると心配や騒音の中でもクリ
アに受信できます。また、イヤホンを使
用中はヘッドホンから音が出ません
から聴覚に迷惑をかける事はありません。

MIC
マイクホンや
ヘッドホンにつ
きます。

外部マイクロホンを接続するジャック
でも。③EARジャックと併用し、オプシ
ションのスピーカマイクMH-12cmや、ヘッ
ダセットHD-2と接続して運用します。

スピーカ
外径36mmのダイナミック型スピーカの
出力です。

LCD表示器
音量数や信号強度、各種の動作状態を
表示する表示器です。運用基板数は2
か所で表示します。

-5-
キー操作

受信機に周波数の設定、メモリーの書き込みなどに必要な操作を行うキーボードです。LCD表示窓内に『LOCK表示』が表示されているときに動作します。

また送信時には『SEND』が点灯している状態でもDTMF機能として動作できます。

![キーボードダイアグラム]

数字キーなどの上端に表示している動作為『FUNCスイッチを押しながらセットしてください』。

周波数やメモリーチャンネルなどの数値をセットするキーです。

▲FUNCスイッチを押しながら数字キーを押したとき

"-RPT"（リピート）、"+RPT"（プラスリピート）は受信周波数に対して送信周波数をスクリプトするキーでリピート機能などに使用します。キーを押すとLCDに"RPT"または"+RPT"が点灯し、リピート運用をしないときは、"SIMP"（シンプルスイッチ）でキーの点灯と消灯をさせます。

この状態では、LCDには何も表示されず送信周波数と受信周波数が一致します。（28ページ参照）

■433MHz帯のレシーバは、あらかじめレシーバー運用の設定5MHzのセットしてあります。

![数字キー設定ダイアグラム]

S1、S2、S3、S4、S5、S6、S7、S8、S9、S10ますますある数字キーを押すと、設定に使用するキーをセットできます。
"TDEC"は、特定の値を指定し受信を続けるか、続けるとき、信号を受信するLCDに、TONEが点灯します。（ストーンスケールユニットFTS-6が必要です）

"TENC"は、トーンエンコーダは、テープなどをオーディオにすることに役立つとき、選択状態になるとLCDに、TONEの表示が点灯します。

"SET"は、9つの信号をエンコーダで送信できるのに、LCDで表示するだけで、自動的に9つの信号を送信します。（ストーンスケールユニットFTS-6が必要です）

"SCAN"（スキャン）は、デジタル、オーディオモードにおいて、オートコントロールスキャンを使用するときに押すキーです。（12ページ参照）

"BAT"（バッテリー）バッテリーの電圧を、5Vステップでデジタル表示することができるキーです。（0.5V〜12.5V）
"LOCK"を押すとキー操作を禁止する。このロック状態ではキー操作を行わないと指示されます。ロック状態を解除するには、"LOCK"の指示が消え、キー操作が可能になることを確認してください。

"BEEMP"を押すとLCDが消えます。OFFにするときはもう一度"BEEMP"を押してください。

"PSET"（プログラムセット）は指定したスケルトンの設定をします。スケルトンは69スケルトンまで設定できます。（26ページ参照）

"MIR"（レミラ）はメモリーチャネルをメモリにメモリとして保存します。（23ページ参照）
▲FUNCスイッチを押しながらはMHz
を押したとき
"TX MHz"（TXモード）はセキュリティ
・セキュリティモードを使用するときに押すキ
ーです。（23ページ参照）

"S/C"（Sメーター/メモリーチャン
ネル）は、メモリーチャンネルを表示しているとき
に、LCDに表示されているメモリーチャ
ネルを切り換えるキーです。

MQ

"C"（クリア）は数値を押すことができた
tおわりに押すクリアキーです。

▲FUNCスイッチを押しながらキ
ーを押したとき
"MQ"（メモリークリア）はメモリーチャ
ネルをクリアするときに押すキーで
ます。（24ページ参照）

STEP

"WPM"（ワード）はセキュリティアラーム
通信用に、10mA以下の電流を入力する所
で（29ページ参照）

▲FUNCスイッチを押しながらキー
を押したとき
"STEP"（ステップ）は"--RPT","+RPT"T
のスプリットを切るときに押すキーに
キーで144MHz帯と430MHz帯が別々にセ
ティックできます。
③430MHz帯のみ5MHzをセットしてあり
ます。

STEP

"VI"（VHF, UHF）は144MHz帯と430M
Hz帯を切り換えるキーです。

▲FUNCスイッチを押しながらキ
ーを押したとき
"DUP"（ダブルレシプ）は144MHz帯と
430MHz帯の両ハンディを用いセキュリティ
レシプスリス通信を行うときに操作するキ
ーです。（24ページ参照）

STEP

"D"（ダイヤル）は機械数をセットする
とき、ナローまたはナローのおどのモー
ドを切り換えるときに使用するキーで
す。

▲FUNCスイッチを押しながらキー
を押したとき
"STEP"（ステップ）はダイヤルモード
の機械数ステップ（10kHz, 20kHz）を切り
換えるスイッチです。
（なおLCDに表示されている機械数が
145.01MHzの場合、20kHzステップに切
り換えると、145.01→145.03→145.05→
と10kHzの数値が数値の状態で変化します。）
電池ボックス（FBA-1A）

電池の電圧が1.5V以下になると点灯します。オプションのNi-Cdパックを使用している場合は再充電を行ってご使用ください。

BATTインジケータ（赤色）

MIC

内蔵マイクホンの位置です。ここに向けて通話します。

BUSY，ON AIR インジケータ

（緑色，赤色）

通常状態で②スイッチが開いたとき緑色に，通信状態では赤色に点灯します。

PWRスイッチ

ワイヤレス通話機能を押しながら③キーを押すとキー画面が表示され，キーの上側に表示される動作をします。

PTTスイッチ

送信状態を切り換えるスイッチです。スイッチを押すと送信，離すと受信になります。
電気ケースをはずすときに操作するアーカーがあります。
ヘッドセット YH-2（オプション）を使用するとPTTスイッチを押さずにYH-2のマイクロホン入力により自動的に通信になるVOX運用ができますので簡易をあけた状態で通信を楽しめます。

VOX運用（ボイスオペレーション）とご注意

① 電話のマイクロホンおよび外部ミキサーのマイクボタン MP=12cmではVOX運用はできません。
② 通話用の音声入力以外のマイクロホン入力（外部音声、第三者の声や背景音など）でもVOX回路を制御するレベルの入力があれば通信状態になりません。
③ VOX感度切換えでVOX回路の感度を下げYH-2のマイクロホンに通った通話は大きな音で行ってください。
④ 通話中のレジュームは受信に反映することのないようです。音声か切れても約1.5秒間通話状態が続くようデリテアタイムを設定しています。
⑤ スイッチ中にYH-2のマイクロホン入力があるとPTTスイッチを押した時には通信状態になりスイッチが停止します。
アンテナについて

本機にはチューナーブロックイプアシスタナシが付属していますから、アンテナ選別に取り付けるだけで利用できます。また、アンテナ選別に同軸ケーブルにより外部アンテナを接続すれば、ホームシアーケーキなどがやるホールドが接続される場でも短時間で接続できることが可能です。さらに出力または移動しヒールアンテナを使用することにより、100km以上と遠距離のものを使えるといった、との性質も充実しています。外部アンテナーの接続は、完成度の高い状態で使用することがありますので、十分ご注意ください。

電源について

本機は3本のコンセントを用いる場合、一般的に1〜1.5Vの市電を本体よりはすきでできる電源ボックスへの接続で運用可能です。なお、電力の供給、電圧の変更は、本体のUNLOCKレバーを下回る方向へスライドさせたながら電源ボックスを本体より引き戻して接続します。取りはずしにした電源ボックスのコンセントは、方角にした周辺に開けて、低電圧の接続をまちがえないように3本ずつ電源ボックスへ接続して接続します。

電源を接続した場合、電源ボックスを本体へ接続して接続します。なお、電源ボックスは同じ形で再利用にしたい場合、ケーブルをもとみ、内部の電圧が10V、100mAのもので、FNB-3A、FNB-4Aをご利用いただくことがあります。

また、FNB-3A、FNB-4Aをご利用の場合、本体を外部電源を用いて接続する必要があります。ケーブルを接続する場合、FNB-3A、FNB-4Aをご利用いただきます。なお、外部電源をご利用の場合、電源を接続することによっては、100V〜120Vの電圧が必要となります。なお、外部電源をご利用の場合、ご注意してご使用ください。
オプション
スピーカマイク
MH-12x3b
トランシーバーを携帯して運用するときや、モービル運用、ホームインデイプ運用のように便利なスピーカー付きトランシーバーで使用できます。

モービルブラケット
MMB-21
モービル運用のときに便利なハンガー型ブラケットです。車のトヨタの窓ガラスの間に差し込んで運用できます。

ソフトケース
CSC-17（FBA-5A、FNB-5A使用時）
CSC-18（FNB-4A使用時）
トランシーバーをショックなどから守るソフトケースで、ショルダーベルトが付属しています。
Ni-Cd電池パック
FNB-3A(10.8V)
FNB-4A(12V)

両充電可能なニッケルカドミウム電池パックです。FNB-3Aのとき連続出力は144MHz帯で約5W、430MHz帯で約4.5W。
FNB-4Aのとき連続出力は144MHz帯で約4W、430MHz帯で同じく約4Wになります。

標準充電器
NC-9A/NC-18A

FNB-3A用標準充電器NC-9A、FNB-4A用標準充電器NC-18Aで充電時間は約2時間です。

DCアダプター
PA-3

FNB-3AまたはFNB-4Aを使用してモービル運用を行うとき、自転車のシグレットライターソケットより電源がとれるオーディオアダプターです。また、FNB-3Aを使用している時には走行中に補充電もできます。
VOXコントロール用ヘッドセット
YH-2

ハンズフリー・オペレーションを行うときのヘッドセットです。トランシーバーを要のベルトなどに固定し、VOX機能と組み合わせると、ハイキングやサイクリング、そして生きながらえたトランシーバーリスニングを通じてオペレーションができます。

トーンスケルチュニット
FTS-6

特定周波数帯受信（トーンスケルチ受信）を行うときに取付けるユニットです。トーン周波数は37Hzでその内切片をキーボードで設定して運用します。

急速充電器/DCアダプター
NC-15

NC-15は、ニッケルカドミウム電池ハザードFNB-3A、FNB-4Aをトランシーバーに接続したまま充電する「FNB-3A→充電1時間、FNB-4A→充電1.5時間」で充電できる急速充電器です。交流100VでFT-727Gを使用するときの交換用電池としても使用できます。
### 144MHz帯

<table>
<thead>
<tr>
<th>Mode</th>
<th>頻度帯域</th>
<th>頻度数</th>
<th>頻度</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHF</td>
<td>144.000MHz</td>
<td>144.000MHz</td>
<td>144.000MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>144.150MHz</td>
<td>144.150MHz</td>
<td>144.150MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>144.250MHz</td>
<td>144.250MHz</td>
<td>144.250MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>144.350MHz</td>
<td>144.350MHz</td>
<td>144.350MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>144.450MHz</td>
<td>144.450MHz</td>
<td>144.450MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>144.550MHz</td>
<td>144.550MHz</td>
<td>144.550MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>144.650MHz</td>
<td>144.650MHz</td>
<td>144.650MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>144.750MHz</td>
<td>144.750MHz</td>
<td>144.750MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>144.850MHz</td>
<td>144.850MHz</td>
<td>144.850MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>144.950MHz</td>
<td>144.950MHz</td>
<td>144.950MHz</td>
<td>ブールデータ通信</td>
</tr>
</tbody>
</table>

### 430MHz帯

<table>
<thead>
<tr>
<th>Mode</th>
<th>頻度帯域</th>
<th>頻度数</th>
<th>頻度</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHF</td>
<td>430.000MHz</td>
<td>430.000MHz</td>
<td>430.000MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>430.150MHz</td>
<td>430.150MHz</td>
<td>430.150MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>430.250MHz</td>
<td>430.250MHz</td>
<td>430.250MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>430.350MHz</td>
<td>430.350MHz</td>
<td>430.350MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>430.450MHz</td>
<td>430.450MHz</td>
<td>430.450MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>430.550MHz</td>
<td>430.550MHz</td>
<td>430.550MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>430.650MHz</td>
<td>430.650MHz</td>
<td>430.650MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>430.750MHz</td>
<td>430.750MHz</td>
<td>430.750MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>430.850MHz</td>
<td>430.850MHz</td>
<td>430.850MHz</td>
<td>ブールデータ通信</td>
</tr>
<tr>
<td>VHF</td>
<td>430.950MHz</td>
<td>430.950MHz</td>
<td>430.950MHz</td>
<td>ブールデータ通信</td>
</tr>
</tbody>
</table>

*注：すべての帯域は日本ラジオ会議の定めに基づいています。*
使い方

ます"各部の操作と接続"をご使用のまえに"を良くお読みください。
これによって操作方法と注意事項をお知りいただけると思いますが、さらに関係数の
設定、メモリーのしかたなどセットを携
包より取り出した時から妍に準備と操作を
してくださいよう。
なお説明に使用しました写真にはアンテナ
を接続していないものがありますが、通信
するときには必ずアンテナまたはダミーロ
ートを接続してください。

1. ①VOLツマミを反時計方向に回し切っ
て電源スイッチがOFFになっているこ
とを確認します。

2. ②電池ボックスのフタを開けて、電池
を指定通り装置をまちがえないように挿入
し、フタを開します。

3. ③電池ボックスを本体の溝に合わせて
スライドしてから取り付けます。

4. 電池を交換するときは、②UNLOCK
レバーを矢印の方向へスライドし、本
体から、③電池ボックスを取りはずします。
5. 付属のアンテナをアンテナコネクタに接続します。

6. ②SQLノブを反時計方向に回し切れて、スケルトン状態の状態にしておきます。

7. ⑥RFスイッチをHIGH状態に設定します。

8. VOX ONスイッチをOFFに設定し、静音状態に設定します。

9. ③VOLノブを時計方向に回して電源スイッチをOFFにします。SURUSYインジケーターが点滅し、④LCD表示部に"144.000"を表示し、444.000MHzを受信できます。

最初に電源スイッチを入れると自動的に144.000MHzの周波数となりますが、バックアップ機能が備えられているため、次に電源スイッチを入れる時は、その前に電源スイッチをOFFにした際の周波数になります。
10. 適当な音量で受信できるように①VOXを調整します。

11. 画像変換を用意中の向上考え場合
完全に調整した場合をスケルプも一定の設定で同じ
と同样に使用して、スケルプに設定してスケルプ
を用意して、同じに回すとスケルプを用意して

12. キーオートの操作により希望の音量数

※439.70MHzを設定する場合には

※なお、スケルプによる変換数の設定など

各部の設定は、27ページに“各種の機能と

操作”で説明してあります。

13. 受信ができましたら通信に移ります。

通信するときは必ずアンテナまたは

デリコードを接続し、画面で無負荷で通

信しないように十分ご注意ください。

①PTTスイッチを押すと①ON AIRイン

ジネラルが点灯して通信状態に切り換わっ
たことを知らせます。①PTTスイッチを押

しながら①MICに向けて放送すれば送信が
できるで①PTTスイッチをはなすと受信

状態に戻ります。
ダイヤル周波数のセット

1. 143.6MHzをセットする場合

<table>
<thead>
<tr>
<th>144MHz</th>
<th>430MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hi</td>
<td>LOW</td>
</tr>
<tr>
<td>FNB-4A</td>
<td>3W</td>
</tr>
<tr>
<td>FNB-3A</td>
<td>4.5W</td>
</tr>
</tbody>
</table>

（143.6MHzをセットする手順）

- [①] 143.6MHzをセットする場合
- [②] 500MHzをセットする場合

2. 500MHzをセットする場合

<table>
<thead>
<tr>
<th>144MHz</th>
<th>430MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hi</td>
<td>LOW</td>
</tr>
<tr>
<td>FNB-4A</td>
<td>3W</td>
</tr>
<tr>
<td>FNB-3A</td>
<td>4.5W</td>
</tr>
</tbody>
</table>

（500MHzをセットする手順）

- [③] 目的に周波数を表示周波数に選ぶ場合には⑤をキープセットすると良いです。
DTMF機能とは

レピターコントロールをはじめ、各種の機能制御に用いられる機能で、Dual Tone Multi Frequencyの通称で知られるものです。

キーや動画させると697Hzと1209Hz、キーや静音で697Hzと1477Hzの2種類のトーンが発生します。

#LOCK: DTMF操作ができます。また
#BELL OFF: 音が出ません。

無関係な表示やキー入力を受付しない時

外部電源を使用し、本機の電源スイッチ以外で電源を入れたり切ったりすると、電源の
立ち上がり時に誤動作をして無関係な表示やキー入力を受付なくなることがあります。

このような状態になった場合に、本機の電源スイッチを5秒間OFF
にしてからもう一度電源を入れてください。正常な動作に戻ります。（ただし、周波数モニ
マーなどは消え、出荷時の初期状態になります。）

バックアップ機能について

バックアップ機能は電源を切るとメモリーアことも忘れずに、パッカップ電池（リチウム電池）の消耗
とと思われました。サービスステーショ
ンにて交換してください。（有料）
各種の機能と操作

各機能の操作方法は、使い方の項目で簡単な説明してあります。モニターの使用、スケジュールなど各種の機能と操作の説明します。

メモリー操作

今週は10チャンネルのメモリーチェンネルを1つずつ、キーボードの操作で容易にメモリーコントロールできます。メモリーにはシンブレックスメモリー（送信待機・発信待機メモリーする）とセミブレックスメモリー（送信待機・発信待機メモリーする）の2種類の方法があります。

1. メモリーの仕方

1. シンブレックスメモリー（1〜10の10チャンネルにメモリーできます）
   例1. 145.68MHzをチャンネル1にメモリーする場合
   NV → 145.68MHzのバンドにセットします
   D → B → D → メモリーする周波数を設定します
   M → 1 → チャンネル1にメモリーします
   メモリー完了
   他のチャンネルにも同じようにメモリーできます。

2. セミブレックスメモリー（1〜4の4チャンネルにメモリーできます）
   ある送信保持数値を同じチャンネルにメモリーし、送信出力の周波数変数を行なう操作です。
   例2. 前1でメモリーサしたチャンネルに送信周波数433.70MHzをメモリーでセミブレックスメモリーする場合
   NV → 433.70MHzのバンドにセットします
   F → M → T → チャンネル1に送信周波数を設定します
   メモリー完了
   ※144MHzのバンドをメモリーするときは
   これを使ってセットしてください。

2. メモリー操作中に押し間違えたらどうなるか
   セミブレックスメモリーやシンブレックスメモリーの動作に影響を与えません。

3. メモリー・チャンネルの呼び出し
   希望のメモリー・チャンネルを指定して呼び出します。
   送信しない場合にメモリー・チャンネルの表示のみ表示します。
コールチャンネルの設定

コールチャンネルは、モニターチャンネルに書き込むものと同じく、周波数を自由に設定できます。

例：コールチャンネルに145.00MHzをセットする場合

430MHzのコールチャンネルはモニターチャンネルに書き込むときも同様に [M] を押して430MHzのバンドにしてセットすることができます。

スキャンコントロール

スキャン操作にはダイヤル周波数スキャン、モニターチャンネルスキャン、固定周波数スキャン（FMS）の3種類の方法があり、ダイヤル周波数スキャン、モニターチャンネルスキャンはマニュアルコントロールとオートコントロールの2通りの方法で操作できます。

マニュアルコントロール

受信信頼の有無に関係なく、マニュアルでスキャンコントロールを行う操作です。
オートコントロール
信号が入力したチャンネルでスキャンが一時止まる方法です。信号を無信号時にスキャンを停止したときにスキャンが停止するようにスキャントマ
ミをセットしております。
連続スキャン中に信号が入力するとその
の周波数で一時停止し、信号が入
らなければ信号を検知するまでスキャンを開
始します。

1. ダイヤル周波数スキャン

1) マニュアルコントロールの場合

<table>
<thead>
<tr>
<th>メモリーコントロールの場合</th>
</tr>
</thead>
</table>
| D | ダイヤルモードにします。
| | または
| | SCAN
| | 1/2のキーキーを押しながら
| | 開始値（0MHzまたは25MHz
| | ステップで連続的にアップ
| | またはダウンします。
| | 手を離すとスキャンは止ま
| | ります。[スキャンの切り替えはナビゲーションボタンでも行います]

2) オートコントロールの場合

<table>
<thead>
<tr>
<th>メモリーコントロールの場合</th>
</tr>
</thead>
</table>
| D | ダイヤルモードにします。
| | または
| | SCAN
| | 1/2のキーキーを押しながら
| | 開始値（0MHzまたは25MHz
| | ステップで連続的にアップ
| | またはダウンします。
| | または
| | 0MHzまたは25MHzステップで連続的にアップまたはダウンします。
| | 手を離すとスキャンは止ま
| | ります。[スキャンの切り替えはナビゲーションボタンでも行います]

※オートスキャンの場合、144MHz帯では
144,000MHz、430MHz帯では440,000
MHzまでスキャンしたあとそれぞれ下
限の144,000MHz、430,000MHzに移り
上限に向かってスキャンをします。
タウンスキャンの場合はこの反対です。

2. メモリーチャンネルスキャン

1) マニュアルコントロールの場合

<table>
<thead>
<tr>
<th>メモリーコントロールの場合</th>
</tr>
</thead>
</table>
| D | ダイヤルモードにします。
| | または
| | SCAN
| | 1/2のキーキーを押しながら
| | 開始値（0MHzまたは25MHz
| | ステップで連続的にアップ
| | またはダウンします。
| | 手を離すとスキャンは止ま
| | ります。[スキャンの切り替えはナビゲーションボタンでも行います]

2) オートコントロールの場合

<table>
<thead>
<tr>
<th>メモリーコントロールの場合</th>
</tr>
</thead>
</table>
| D | ダイヤルモードにします。
| | または
| | SCAN
| | 1/2のキーキーを押しながら
| | 開始値（0MHzまたは25MHz
| | ステップで連続的にアップ
| | またはダウンします。
| | または
| | 0MHzまたは25MHzステップで連続的にアップまたはダウンします。
| | 手を離すとスキャンは止ま
| | ります。[スキャンの切り替えはナビゲーションボタンでも行います]

※オートスキャンの場合、144MHz帯では
144,000MHz、430MHz帯では440,000
MHzまでスキャンしたあとそれぞれ下
限の144,000MHz、430,000MHzに移り
上限に向かってスキャンをします。
タウンスキャンの場合はこの反対です。

-25-
3) オートスキャンの停止

オートスキャンは次の5種類の方法で停止することができます。

- アップまたはダウンキーを押す
- クリップキーを押す
- ディラムキーを押す
- メニューキーを押す
- PSTスイッチを押す

この場合はスキャンスイッチを押すか、自動的に停止します。

4) オートスキャンの解除

F + D → LCDのSCAN表示が消灯し解除します。

5. 指定帯域内スキャン（PMS）

帯域内をセットしたスキャンの数だけスキャンを構造操作を行うことができます。（20kHzスキャンで1つとする）

指定帯域内スキャンのスキャンは15スキャンまでセットできます。

1）指定帯域内スキャンのスキャンセット

PMSスキャンのステップを3ステップにセットする場合

F + O → PMSスキャンにカットします

O + D → スキャンをかける場合

PMSスキャンにカットします

F + A → 3ステップ完了

スキャン中に指定の値を入力すると、その値の設定が終了します。
3. 指定範囲内スキャンの解除
指定範囲内スキャンはスタイムを押す
まで解除することができます。

>D……デジタルキーを押す
>C……データキーを押す
>V.U.キーを押す

述というとき、注意が必要です。

プライオリティ
プライオリティモードを、コールチャンネルを
受信中、約5分間に1回約0.5秒間
メモリーチャンネルを受信します。

１. プライオリティ操作
例）メモリーチャンネル1（1～6）のH
メモリーチャンネルを選択し、
プライオリティモードまたはコールチ-
ャンネルを受信します。

>D……プライオリティモードまたはコールチ-
ャンネルを受信します。

メモリーチャンネル1上のプライ-
オリティ動作の際、メモリ-
エーターチャンネルを受信中
(SAV) が表示されます。（メモ-
リーの操作は別ページ参照）

プライオリティモードに信号が入る時、
プライオリティ動作を、メモリーチ-
ャンネルに、その後再びデータモード
に戻します。

2. プライオリティ動作の解除
プライオリティ動作を、内容が3秒前後
の受信データを、メモリーチャン-
ネルに設定することができます。

>D……デジタルキーを押す
>C……データキーを押す
>V.U.キーを押す

パワーセーブ
受信中スキャンは常に進行して無効
のとき、CPU以外の電流を抑制し、
電池の消耗を最小にするため、パワーパークは、1秒から5秒までの
設定で、データモードを自動的に切り替えます。

1. パワーセーブタイムセット
パワーセーブの時間設定をする操作
です。
例）パワーセーブタイム3秒にセット
する場合

[S] 3 3 3 LCD: 3333
パワーセーブタイムを設定し
ます。

パワーセーブタイムを設定しています。

—27—
2. パワーセーブセット

パワーセーブセットは次の操作を行いします。

F × 7 ････････････パワーセーブ機能を開始します。

0.5秒間受信制御断を変更。表示した後セットしたパワーセーブ時から0.1秒
ごとにウインドダウンして0.0秒になると
0.5秒間その周波数を受信します。
この場合、その周波数に信号がない場合
には再びパワーセーブ機能がスタートし
ます。
ウインドダウン0.0のときに信号が入来
するとその時点でパワーセーブが停止し
て継続して受信できます。(F × 7 で
パワーセーブが再スタートします)

3. パワーセーブの解除

パワーセーブは次の2種類の方法で解
除することができます。

D ････････････････クリアを押す

D ････････････････ダイヤルキーを押す

セミディプレックス運用

ダイヤルモードの114MHz帯：430MHz
帯の周波数を利用し、セミディプレッ
クス通信を行うことができます。
例) 342.00MHzを受信して455.80MHz
を送信する場合

D ･････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････････28･･･
送信オフセット機能

送信周波数を受信周波数から任意の値だけシフトする機能で、144MHz帯と220MHz帯でそれぞれ設定できます。

1. 送信オフセット操作
   1) シフト幅セット
      ディアセート、コールチャンネルモードいずれの状態に希望のシフト幅をセットします。シフト幅は5kHzに設定する場合、
      \[ \text{S} \rightarrow \text{F} \rightarrow \text{E} + \text{num} \]と組に伴います。
      \[ \text{D} \rightarrow \text{F} \rightarrow \text{E} + \text{num} \]を組にしてセットします。
      （シフト幅を0kHzに設定する場合は \[ \text{S} \rightarrow \text{F} \rightarrow \text{E} + \text{num} \]と組に伴います。）
      \[ \text{D} \rightarrow \text{F} \rightarrow \text{E} + \text{num} \]を組にしてセットします。
      \[ \text{F} \rightarrow \text{D} \rightarrow \text{E} + \text{num} \]を組にしてセットします。
      \[ \text{D} \rightarrow \text{F} \rightarrow \text{E} + \text{num} \]を組にしてセットします。
      \[ \text{F} \rightarrow \text{D} \rightarrow \text{E} + \text{num} \]を組にしてセットします。

2) シフト幅の確認
   ディアセートモード、コールチャンネルモード、その他の状態に希望のシフト幅を確認します。
   \[ \text{S} \rightarrow \text{F} \rightarrow \text{E} + \text{num} \]と組に伴います。
   \[ \text{D} \rightarrow \text{F} \rightarrow \text{E} + \text{num} \]と組にしてシフト幅を確認します。シフト幅を0kHzに設定する場合は
   \[ \text{S} \rightarrow \text{F} \rightarrow \text{E} + \text{num} \]と組に伴います。

3) 送信オフセット選択
   シフト幅セット後、シフト方向を設定して送信オフセット運用を行います。
   \[ \text{F} \rightarrow \text{E} + \text{num} \]を組にしてシフト幅を設定します。

送信時には、シフトした発信さての主に授信側の発信波になりかねません。

1) シフト幅
   \[ \text{F} \rightarrow \text{E} + \text{num} \]を組にしてシフト幅を設定します。

2) 送信オフセット選択
   送信オフセット運用を解除し、シフト幅を選択する場合は次の操作を行います。
   \[ \text{F} \rightarrow \text{E} + \text{num} \]を組にしてシフト幅を設定します。

2. リバース操作
   送信オフセット運用時に受信周波数を逆転するリバース操作です。
   \[ \text{F} \rightarrow \text{E} + \text{num} \]を組にして受信周波数を逆に設定します。
   \[ \text{F} \rightarrow \text{E} + \text{num} \]を組にして受信周波数を逆に設定します。
トーンエンコーダ、トーンスケルチ

スケルチ運用

1. トーンエンコーダ運用（FTE-4）
レヒーターアクティブ用の88.5Hzのトーンエンコーダ（FTE-4）を内蔵しています。FTE-4を使用する場合にはLCDに表示しているトーン周波数は自動的に88.5Hzのトーンを発生します。

2. オプションのトーンスケルチユニット（FTS-6）を取り付けて使用する場合
設定の局などの受信を含むトーンコード運用および、レヒーターなどのアフターサーのトーンスケルチのトーンコード運用をセットするトーンスケルチです。

1）トーン周波数のセット
例 トーン周波数88.5Hzをセットする

2）トーンスケルチの運用
あらかじめトーン周波数をセットしておくと、LCDに表示されます。（例参照）
レピーター運用

143kHz帯に許可されたレピーター
方式はJR/WA局の場合を例に示す。
434.00MHzの信号を受信し430.025MHz
で送信する5MHzアフリケーターの方式
です。
これは、トランシーバから出た信号を
434.00MHzで受信し、430.025MHzを受
信することになります。また、88.5kHzの
送信トーンによるCTCSS方式です。
FT-727Gでレピーター局を動作させる
周波数等の設定には次の手順の方法が
あります。
1. シフト幅を入力して受信周波数に対
して送信周波数がシフトする方向と
報を入力して行うRPT、－RPT機能
による使用方法
2. 受信周波数と送信周波数を重ねてメ
モリーするときデフレックスメモリ
－使用する運用方法。

~一度電源を切ると停止、消去する機能は……
(1) スキャン動作は電源を切るとその時の状態で停止し電源を入れても再スタート
(2) デフレックス状態やBEEPがOFFのときに電源を切って、再度電源を入れたとき
デフレックス状態になり、BEEPはONになります
(3) セーブ動作中に電源を切ると本体と電源を入れても再スタートしません。
(セーブタイムのみ保持しています。)
1. +RPT、-RPT機能による運用

図12 JRWA05R、439.0MHzをセットして運用する場合

+RPT

F + RPT

F + RPT

F + 5 + D

F + 1

RPT側

LOW帯3MHzを入力します

（あらかじめ入力してある場合は入力する必要はありません）

F + 1

RPT側

LOW帯3MHzを入力する

LOW帯439.0MHzを入力する

セット完了

（注）使用時に430MHz帯は5MHzシフトが設定されています。春秋

2. セミデクルスメモリーによる運用方法

+RPT、-RPT機能による方法では、キーボード、ノーマーなどすべての方法で
設定した周波数がデータするため通常の
通信とレピーター通信でシールド・フードス
セッションが機能するため、トーンエレ
コーダの動作を停止する必要があるです
が、メモリー方式によるもっと1チャンネル
1チャンネルまで受信周波数、送信周
波数、トーンエレコーダの動作を一つの
メモリーを用いて一つの
リモートコードに重ねてメモリーで
できるため、ノーマー呼び出し操作により
簡単なレピーター運用ができます。

メモリー方式によるレピーター運用は、
将来レピーター端によってシールド・フード
の状況の変化に対応でき、またレ
ピーター設定、ブースト、トーン停止などの操作
が不要になります。

図2 JRWA05R、439.0MHzをチャンネル1にセミデクルスメモリー
する場合の図（図参照）

+RPT

F + RPT

F + 5 + D

F + 1

RPT側

LOW帯3MHzを入力します

（あらかじめ入力してある場合は入力する必要ありません）

F + 1

RPT側

LOW帯3MHzを入力する

LOW帯439.0MHzを入力する

セット完了

（注）使用時に430MHz帯は5MHzシフトが設定されています。春秋

リパース操作

キーボードメモリーで設定した周波数が反転
して相手側かレピーターに送信されている
周波数を受信できますからレピーターを逆
逆に直接相手側と通信が行えどうかどうか
チェックすることができます。

（2ページ参照）
2 レピーター局を動作させる
運用方法

日本のアマチュア用レピーター局はTCSS（Continuous Tone-Controlled Squelch System）によりアクセス方式でトーン信号に88.5kHzを発送することになっていません。

すなわち、アマチュア間のレピーター局は、88.5kHzの通波トーンを伴った信号を受信した際にのみ中継、送信されます。

基本的な運用方法としては、次のようなアマチュア局が使用することが好ましい。
1. 長時間の使用や強出力はしない。
2. 不必要な大電力を送信しない。
3. レピーター局を過ぎないで通信できる場合には使用しない。
   などを必ず守ってください。
FTS-6トーンスケールユニットの取付方法

FTS-6はFTS-7/27Gに組み込んでキーボード操作により30トーン内の1トーンを
選択して使用できるトーンスケールユニットで、チェロ・調弦を防ぐことでトーンエフィ
クトとしても使用できます。

取付方法

① ベースボックスを外して、
② 半体面底部のヒスメを負ってパートリボックス取付部を外します。（第1図）
③ パーキャリオックス取付部の内側がFTS-6の取付場所で、すでにトーンエフィー
クのFTE-4が取り付けておりますから取り替えられます。（第2図）
④ FTS-6の取付方向をピン数（右側）
左側）により確実にソケットに取り
付けてと、ピンが曲らないように左右平均
に静かに押しつけてください。（第3図）
⑤ FTS-6は標準セッティングにより、現状数値
枠が±0.5kHzになるよう調整の上出荷し
ておりますので、取付後に調整の必要は
ありません。カーブレベル調整が必要な場
合には、右上のVRで行います。
⑥ パーキャリオックス取付部を元通りにヒ
スを防めFTS-6の取付が終了です。
⑦ トーンスケールはトーンエフィード
を動作させるには3ページを参照してく
ださい。
⑧ FTS-6をはずす場合には、FTE-4が
下図のようにLAMPの bek を取り
付けると受信できませんから、ご注意
ください。（第4図）
定格

共通
送信電波電力範囲
144.00～146.00MHz
430.00～460.00MHz
送受信周波数
上記電波電力範囲内で10kHz
20kHzステップ
電波の型式
F3 FM
アンテナ
デジタルパッド
ホイールアンテナ DNC機能
外部アンテナ使用不可
電源
FBA-5A 6V平均電圧8.5V
FNB-3A （FT700/C機器用）
FNB-6A 12.0V
NC-15 AC DCサプライ FNB-3A/6A
（併用）
電波電圧範囲
150.0～13V
消費電流
表1参照
ケース寸法
71×38×160.5 mm
FBA-5A実装時
重量
約500g
（電池ケース、軽、電池6つか、ラバー
アングラ、ハンドストラップ付）
送信部
定格出力
17W（144MHz帯）
11W（430MHz帯）
（送信出力）参照
定調の方法
リアクタンス調節
最大周波数偏移
±3kHz
音無電波数帯域
10kHz以内
不要電流強度
60dB以下
サインビーダンス
50Ω不平衡
マイクロホン
エレクトレットコンデンサー
内蔵インピーダンス2kΩ
チャンのスイッチにマイク
インピーダンス15kΩ ヘッドセー
トYH-2使用可能
トーンエンコーダ
88.8kHz
受信部
受信方法
デジタルコンバージョンスーパーヘテロダイナ
第1中間周波数
36.5MHz
第2中間周波数
455kHz
受信帯域
0.25μV 入力SINAD 12dB以上
1μV 入力 S/N 30dB以上
選択
3kHz以上/4kHz
3kHz以下/8kHz
低電流出力
45mA以上/2mA負荷 THD10％

★デジタル、定格および寸法等は使用のため予告なく変更することがあります。
★使用や整備に係る機能を保証または使用することにありません。

—36—
<table>
<thead>
<tr>
<th>周波数</th>
<th>144MHz</th>
<th>430MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>効率</td>
<td>約100mA</td>
<td>約150mA</td>
</tr>
<tr>
<td></td>
<td>約50mA</td>
<td>約50mA</td>
</tr>
<tr>
<td></td>
<td>約24mA</td>
<td>約24mA</td>
</tr>
<tr>
<td></td>
<td>約1.3mA</td>
<td>約1.3mA</td>
</tr>
<tr>
<td></td>
<td>約1.1mA</td>
<td>約1.1mA</td>
</tr>
<tr>
<td></td>
<td>約10mA</td>
<td>約10mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>344MHz</th>
<th>430MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>容量</td>
<td>3.5W</td>
<td>2.0W</td>
</tr>
<tr>
<td></td>
<td>2.0W</td>
<td>1.5W</td>
</tr>
<tr>
<td></td>
<td>1.5W</td>
<td>1.0W</td>
</tr>
<tr>
<td></td>
<td>9.8W</td>
<td>4.5W</td>
</tr>
<tr>
<td></td>
<td>4.5W</td>
<td>3.0W</td>
</tr>
<tr>
<td></td>
<td>3.0W</td>
<td>2.0W</td>
</tr>
</tbody>
</table>

表1

表2

-37-
ご注意

■安全上の注意

● 電気製品は、

600〜15Vです。またはオフラインの電源チャージャー、またはACアダプター・DCアダプター・DC-15をご使用ください。

● 室温を適度な温度で保つこと。

温度が高いと、性能が低下するなどの故障を招く可能性があります。適度な温度が保たれていることを確認してください。

■ 取扱上の注意

● 取扱、使用、保管、操作などを適正に行うため、次のようなお願いをできるだけ守ってください。

1. 機器の周囲は常に清潔に保つことが重要です。清掃が不十分な場合、内部の温度が上昇し、機器の損傷を防ぐため、定期的に清掃を行うことが必要です。

2. 機器の取り扱いを適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な操作を心がけることが重要です。

3. 機器の使用を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な使用を心がけてください。

4. 機器の保管を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な保管を心がけてください。

5. 機器の操作を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な操作を心がけてください。

6. 機器の使用を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な使用を心がけてください。

7. 機器の保管を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な保管を心がけてください。

8. 機器の操作を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な操作を心がけてください。

9. 機器の使用を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な使用を心がけてください。

10. 機器の保管を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な保管を心がけてください。

11. 機器の操作を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な操作を心がけてください。

12. 機器の使用を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な使用を心がけてください。

13. 機器の保管を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な保管を心がけてください。

14. 機器の操作を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な操作を心がけてください。

15. 機器の使用を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な使用を心がけてください。

16. 機器の保管を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な保管を心がけてください。

17. 機器の操作を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な操作を心がけてください。

18. 機器の使用を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な使用を心がけてください。

19. 機器の保管を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な保管を心がけてください。

20. 機器の操作を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な操作を心がけてください。

21. 機器の使用を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な使用を心がけてください。

22. 機器の保管を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な保管を心がけてください。

23. 機器の操作を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な操作を心がけてください。

24. 機器の使用を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な使用を心がけてください。

25. 機器の保管を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な保管を心がけてください。

26. 機器の操作を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な操作を心がけてください。

27. 機器の使用を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な使用を心がけてください。

28. 機器の保管を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な保管を心がけてください。

29. 機器の操作を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な操作を心がけてください。

30. 機器の使用を適度にすること。

においては、適度なストレスを加え続けると、故障の原因となる可能性があります。適度な使用を心がけてください。
● 外部電源について

- 自動操縦の有無
  - 無線装置の使用は禁止となっていますのでご注意ください。
- 外部アンテナ
  - テレビアンテナや、電灯線からなるべく離してください。
- ケースが汚れたから、
  - 中所反射などで汚れを落とし、乾いた布でふき取ります。レンズやレンズは使用しないでください。

![外部電源プラグの接続]

外部電源プラグの接続
このとき

・トーンスケルチュニットをはずしたら受話ができない。（すぐに聞く）
  トーンスケルチュニットを取り外したときにトーンエコーがPTE4か抵抗の差し込むかも注意が必要か。

・メモリーアンテナを呼出ししたらなら
  メモリーなしのチャンネルを呼び出し

・送信したら"P TT"とM ラウンド表示が出た。

・スキャン中はスキャン停止後（leşme）すること。

・電池
  PTTスイッチは確実に押していますか。
  VOXスイッチは確実に押していますか。

・P TTスイッチは確実に押していますか。
  VOXスイッチは確実に押していますか。

・電池の寿命は正常ですか。
  VOXスイッチはONになっていますか。
  YH-2使用時（）
アマチュア局免許申請書類の書き方

表1 原始の要証明書類の書き方

<table>
<thead>
<tr>
<th>項目</th>
<th>部署</th>
<th>譲与等の型式</th>
<th>部署</th>
<th>譲与等の型式</th>
</tr>
</thead>
<tbody>
<tr>
<td>11MHz</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10MHz</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>90MHz</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>60MHz</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

伝送系統図(1)（JARL保証証で供FT-T27Gの免許申請の場合は開発者不在室105あるいは同名FT-T27Gと記入し伝送系統図を参照できます）

FT-T27G伝送系統図

伝送系統図(2)
八重洲無線株式会社

営業部 〒148 東京都大田区下丸子1-20-2

電算管理係 〒231 埼玉県さいたま市中央区下落合1-22-32 メルファビル 802 (042) 220-3174

取引口座係 〒100 東京都中央区日本橋向島1-4-1 住友銀行東京中央支店

営業支援係 〒100 東京都中央区日本橋向島1-4-1 住友銀行東京中央支店

製品開発係 〒100 東京都中央区日本橋向島1-4-1 住友銀行東京中央支店

生産工場等 〒222 横浜市中区元町3-1-1 住友電波(株) 231-0803

生産工場等 〒238 埼玉県川越市月見台1-7-1 川越都市大学

生産工場等 〒222 横浜市中区元町3-1-1 住友電波(株) 231-0803

生産工場等 〒238 埼玉県川越市月見台1-7-1 川越都市大学

生産工場等 〒222 横浜市中区元町3-1-1 住友電波(株) 231-0803

生産工場等 〒238 埼玉県川越市月見台1-7-1 川越都市大学

サービスセンター 〒161 東京都文京区新川町1-1-11 住友電波(株) 143-8740

サービスセンター 〒161 東京都文京区新川町1-1-11 住友電波(株) 143-8740
FT-727G 取扱説明書 正誤表

取扱説明書中に誤りがありますので、お手数ですが次の様に、追加、訂正、読み換えをお願いいたします。

* 6ページ 左下

キーボード

受信時に画面表示の設定、メモリーの出
込みなどが素早く行うためにキーボード
です。LCD表示部内の"LOCK"オ
ボ (ロック)が点灯しているときは動作しま
す。またスティッカは、音声が出ている状態
でもDTMF機能として操作できます。

* 8ページ 左下

DSP

"DSP（ダイナミックシステム）はダイナミック
システム、コールチャンネルモードを兼ね、
約5秒間で1回の0.5秒間の間、メモリー
チャンネルを変更するメモリオペリティ操
作を行うためのキーです。（27ページ参照）

* 15ページ 左上

再生電力の数値を測定するようにするためにFNB-3AとFNB-3Aのとき送信出力は約5Wになります、

* 23ページ 右中央

メモリーキャッシュ

メモリーキャッシュを測定してメモリーキャッシュします。

* 26ページ 右中央

- FMB

- FMB

- FMB

- FMB

- FMB

- FMB