OPERATING MANUAL

FT - 7

YAESU MUSEN CO., LTD.
1-20-2 Shimomaruko, Ota-Ku, Tokyo 146, Japan
このセットについて、または、ほかの当社製品についてのお問い合わせ、お返しのサービスステーション窓お問い合わせ。又、その品は当社のセットの番号（シャーシー番号にあってある名標および保証書に記入してあります）をあらかじめお知らせください。また、クーポンをおいただくときは、あなたのご住所、ご氏名は忘れずにお書きください。
モービル・トランシーバー FT-7

オールソリッドスケート・トランシーバーFT-7は、SSB（この帯域をカバーする）、USB（この帯域をカバーする）、CW（この帯域をカバーする）の3種類の帯域をカバーするコンパクトなモービルトランシーバーです。

基本構成は、受信側はもとより送信部を含むにいたるまですべて半導体化したプリセット型素子のシンクルコンバージョン方式です。

送信部については、コラム部の半導体を大きく、リアリテイに価値のある大型トランジスタによる広帯域増幅方式の採用で、パワースイングの切り替えとTUNEで受信感度を最良に合わせて高信頼性をとどめることができます。パワーキャリプレーショントー切替えのスイッチを握ることにより、信頼性をさらに向上させることができます。

受信側には、デュアルゲートMOS FETによる高感度増幅、ショットキャップ・イングリッドによるミクサ（信号）受信機、ノイズファインダー、クリファイダ、マーカー回路など、高感度、高信頼性がすべて備えられております。

高感度なVFOは時刻検査を改めて行なうことで、もややディスクレードによる周波数をチェックしやすい信頼性を高めています。さらに各バンダーチャネルのFIX回路により水準制御も可能です。

構築的には、主要回路にプラグインモジュールのケーブル方式を採用し、マザーボード1枚によって構成しており、モジュールの切り替えによって各帯域の特性を向上させ、各部の点検調整も容易です。

電源には、モービル用最大15Vを直結使用できるため、薄いほど小型軽量で、固定用電源には専用交流電源が付属しており、側面に取り付けて使用できます。

以上の通り、モービル用SSB/CWトランシーバーの目印として、基本回路とアクセサリ回路に十分な検査を加え、さらに付属の説明書を整えて構成しております。すくない性能と操作性の良いモービルトランシーバーです。

ご使用いただく前に、この取扱説明書を良くお読みいただけ、アマチュア無線をお楽しみください。
定格

送信周波数範囲
80MHz帯 3.5〜4.0 MHz
40MHz帯 7.0〜7.5 MHz
20MHz帯 14.0〜14.5 MHz
15MHz帯 21.0〜21.5 MHz
10MHz帯 A 28.0〜28.5 MHz
B 29.0〜29.5 MHz
C 29.5〜30.5 MHz
D 30.0〜30.5 MHz

電波型式
LS8, USB(A12)
CW(A1)

使用半導体
シリコンランタンスタイラ

定格出力
AI, A12, 20W DC

変調波形正弦波
50kHz以上

変調波形正弦波
50kHz以上（10kHzにおいて）

変調波形正弦波
-40kHz以下

変速感度特性
350〜2700kHz - 6dB

電流安定度
-31dB以下

変速感度特性
初期変速300Hz以内，以後30分あたり
100kHz以内

白熱インピピードス
50Ω (52Ω)

マイクロロンインピピードス
50Ω

受信感度
9.5μV入力MS/N24Ω以上

イーグル比
50Ω以上

イーグル比
50Ω以上

選 抗 温度
-40度；+40度

温度安定性
+20kHz変動時60kHz（入力20dB）

低温波出現
15℃THD, 3Ω以上

出力インピピードス
4Ω

電源電力
負荷電流 13.5Ω±10%マイナス補償
交流 100V50/60Hz（F0-4またはF0-30NSを使用）

消費電力
直流 12.5V 受信時 0.44A
交流 100V50/60Hz 出力 40VA

ケース寸法
幅238×高さ86×奥行260cm

本体重量
約5kg
付属品

本機にはつきのような附属品がついています。ご使用に
なるまえにこれらすべて揃っていることを確かめて
ください。

① 電流用電源コード 1本

本機を直流電源で使用するための電源コードで長さ
約3メートルの赤と黒のコードに6Pの角型プラグ
がついており、赤線の途中には瞬間ヒューズホールダ
があり、6Aのヒューズを入れてあります。

② マイクホローリン

インタフェース端子500Ωのハブ型ダイナミックマイク
ホローリンでFRTスイッチつきです。メタルコード先端の
1Pメタルプラグで本体と接続します。

③ 付属プラグ 1個

アンテナを接続するための1P型同軸プラグです。

④ 小型ホンププラグ 2個

2Pプラグで1個はヘッドホン用、1個は電源の
接続用です。

⑤ ブラック・アダプター 1個

大型プラグ用のヘッドホンにはアダプターを外して
ご使用ください。

⑥ モーブルマウントブラケット 1個

モーブル電源の場合、マウントブラケットを使用し
てデジタルコードを下に取り付けます。
(取付ネジ式付)

⑦ ヒューズ 6A 1個

ヒューズが切れたらときには、その原因を調べてその
原因を取除いた後ヒューズを交換してください。

第1図 マイクの接続
第2図 ヘッドホンの接続
第3図 電源の接続
パネル面の説明

1. TUNING KNOB
 調整用周波数を変えるツマミです。VFOのパルプンを回転させることで特殊な調節機構により結合しております。
 1回転約50kHz程度です。

2. DIAL
 デイアルポタンには、内側で50kHz間隔、外側で1kHz間隔の二連の調節用のスイッチが組み込まれていて、内側のスイッチは内側を内側、外側のスイッチは外側を外側に回す操作です。

3. CAL
 デイアルを校正に使用するレバーです、校正方法は9ページをお覧ください。

4. RF GAIN
 受信機の音量を調節する機能を持ち合わせたマッラーアンプレバーです。スイッチを押すと調節が可能となっています。

5. AF GAIN
 音量調整用ツマミです。スイッチを押すと調節が可能となっています。

6. TUNE
 受信機周波数を変える機能を持ち合わせたツマミです。

7. BAND
 80m〜10mの5アメージアバンドを選択するスイッチで、パネルには表示を示しております。

8. MODE
 USB、LSBおよびCWの電波型を切り換えるスイッチです。スイッチを上にするとUSB、水平にするとLSB、下げるとCWとなります。また背面のKEYジャックに電源を接続してCWRの周波数で連携するとキーラージオはステレオ化となります。

9. NB MARK
 ノイズブラッカーの操作用のスイッチです。

10. CLARifier, VFO, FIX
 固定波長への選択もVFOへと変更することができます。水晶発振器の設定値を変更するだけです。

11. CLARifier(CLAR)
 デイアルを動かすとパネルは電源をかえることが可能となる。
背面の説明

① GND
シーシャをアースする端子です。できるだけ直線を伴って敷設する等を大切にします。また、各チャネルについても分離して使えます。

② ANT
アンテナ接続用のM型内装コネクタです。M型内装プラグを使用してアンテナを接続してください。

③ KEY
CWで運用するときに電話を接続するイコックです。プラグを外すとBMWで運用すると、キャリアの漏洩を防ぎます。

④ EXT SP
外部スピーカーを接続する2P型コックです。これにプラグを接続すると内蔵スピーカーの動作を止められます。使用するスピーカーはインピーダンス4Ωのものをお勧めします。

⑤ MIC GAIN
マイク入力の調整旋钮です。信号音量に合わせて50dB～55dBの変調レベルが設定されます。

⑥ EAR
ヘッドホン用プラグを接続するジャックです。プラグを外すると内蔵スピーカーまたはEXT SPに接続した外用スピーカーの動作をとめます。ヘッドホンにはインピーダンス4Ω～8Ωのものを使用してください。

⑦ POWER
電源をON/OFFするスイッチです。
ご使用のまえに

アンテナについて

本機はアンテナビピングが50Ω系の負荷に接続するように設計されています。従ってアンテナ端子に接
続するかのインピーダンスがこの値にあるアンテナであ
ればどのようでも良いのですがそのまま使うことができ
ます。採用の条件がわからぬご自由にお調べください。
インピーダンス50Ω系以外のアンテナを使う場合は、ア
ンテナ端子ビピングの間にアンテナチュート"FC-501"な
どののインピーダンス変換器を入れて50Ωに接続して良いか
いえど、それでもアンテナのSWRは1.5以下になるとよ
うにアンテナ系を調整してください。SWRが低いとき
には正規の送信出力が出ないばかりでなくスイッチ放
電発射の原因にもなり、また短波のトランスミスに害分
な負担がかかりますし異常です。

アンテナのSWRにより送信出力は大幅で絶対に低
下します。
SWR 1.0を100%としたとき、SWR 1.5で90%, SWR
2.0で75%, SWR 3.0で50%に低下します。
orthyで行なうことはなくしたと使用するとき
のアンテナは地条件が固定局の場合にくらべて制限さ
れるための電力の出力は特に大きな変更点は出るが負担に影響し効率
よく使うようにしてください。

モービル運用は、現在のRSシリーズのモービルアン
テナ引、本体SM-2、インスタントレンジRSE-2と
3.5MHz〜28MHzのバンド用アンテナとして使用
RSL-3〜RSL-28の組み合わせでHFP型アンテナアダプ
タン用に使用できます。

RSM-2〜RSE-2の組み合わせは2mバンドのヘリコイド
アンテナとして設計しており、HFP型のループアンテナ
をつけても2mバンドで使用できますから、ス
モートをモービル運用ができます。

設置場所について

ネットワーク化をさせるために、ネットワークごとに設置場所には充電分に欠
をつけてください。いったんどのような場所であれです
のでこのような場所を避けて、ネットワークごとに設置
できるだけ広く周囲をあけて通風のよい状態に設置し
てご使用ください。

本機の設置上、避ける場所
○放射性物、放射線物の排、熱風が直接あたる場所
○湿気の多い場所
○コイルの多い場所
○蒸気、蒸発、蒸気排ガスに近い場所

電源について

本機には直流13.5Vマイナス接続、電流容量4Aの電
源が必要です。
モービル等の移動局として使用する場合は、コードの本
体をプラス端子に、黒線をマイナス端子に直接つながで
ください。
予備電源のBHP 50〜60Hzの商用電源で使用するときは
上記容量の変電機を設置して使用する必要を伴います。

PT-1型用などのBHP 4〜4の形であります、ま
ラジオSCANTLER-FP100に組み合わせて使用できる電流容量をもっています。

動作させる前の準備

本機を動作させる前に、つきのような準備が必要で
す。電源につく前にまずこれらの準備をします。

1. まず、この取扱説明書をよくお読みになってセット
の取扱い方法を覚えてください。SSBトランスミッ
ターを初めてお使いになる方は特に注意して読んでいただ
き、電源を入れない状態で操作に慣れてから実際に操
作をするつもりで各スイッチを2〜3回して練習し、操
作を充分に身につけた上で実際の運用を行なってくださ
い。
周波数（ダイアル）の読み方

(1) 周波数は、メインダイアル（内側の50kHz目盛）とサブダイアル（外側の1kHz目盛）のダイアル指示の組み合わせで読み取ります。

また、各バンドでTUNING KNOBを時計方向にまわすと周波数は下くなります。
使い方

受信操作

準備ができて、パネル面のPOWERスイッチをOFFにした後電源を接続します。
【4】と【7】のプラグ（直流電源コードまたはFP-7との接続コ-
ード）を抜き挿入するときは必ずスイッチを切ってから
行ってください。POWERスイッチを入れたまま抜き
挿入すると内部のトランジスタなどが破壊する場合があ
ります。電源をつながないときは、まだスイッチで受信します。

1．パネル面のツマミを、スイッチをつなぎのようにセット
します。これ以外のものはどの位置にも受信確
率には影響ありません。また、MODEがSSBの場合、7
MHz近辺ではLSB、14MHz近辺ではUSBを使う
のの決定的な講義になっています。

MODE ————受信しようとするモード
NB/MARK ————OFで（レバー水平）
VFO/FIX/CLAR ————VFO（レバー水平）
DIAL ————受信しようとする周波数付近
TUNE ————各バンドとも中央値の250kHz
（または500kHz）

2．功率 Bands———（受信しようとするバンド）
AF GAIN ————反時計5段方向に向かせます
RF GAIN ————時計5段に合わせます

3．PTT–FのPOWERスイッチをONに、専用交流電源FID–7を使
用する場合には本体のスイッチを入るとすぐにFID–7の
POWERスイッチもONにします。

4．スイッチとディスプレイの時計を合わせてAF, GAINを
時計5段的に下げていくのをスピーカーからノイズが
ほとんど聞こえなくなるまで設定します。

5．ノイズが多少血張るようなTUNEを調整
します。

6．DIAGをあけて希望の周波数に回調します。

7．選音機器の上にAF GAINで調整します。

8．希望の信号を受信した場合「RTUNE」として
最後に精度で受信するようにAFしてください。

9．受信をつけてから、相手側の送信周波数が変わっ
てきたときはディスプレイを動かすことなくVFO/FIX/FLA-
Rのキーボードを押してCLARツマミで相手側の
周波数を受信できます。

CLARツマミが中央の位置でディスプレイと同じ周波数
になり、土壌が明るいモードで変数を入力してい
ます。またブリッタツマミが動作している場合にはイ
ジンクリークが広がります。

10．自動制のイミュレーションノイズなどのパルス波処理
があるときにNB/MARKスイッチのレベルを上げてす
るとノイズブランクが動いて快適な受信ができます。

11．ヘッドホンを使用する時は、EARジャックにプラグ
挿入すると内部スピーカーの動作がまわりのプラグよ
り出力がとど減ります。ヘッドホンは適度に音量率
の音量を使って使用してください。

メモ：赤脚のある接続にはNORMALジャックに配
線してあるRMS, 10Ωをもとと、RMS, 10Ωをショート
してください。

送信の予備調整

SSB, CW、いずれのモードで送信する場合でも、まず
予備調整が必要です。つきの手順で予備調整します。

1．パネル面のツマミを、スイッチをつなぎのようにセット
します。

MODE ————CW
DIAL ————送信しようとする周波数付近
TUNE ————各

2．POWERスイッチをONにします。専用交流電源FID–7
の場合はFID–7のPOWERスイッチもONに
します。

3．マイクロホンのPTTスイッチを押して送信状態に切
換えます。

4．TUNEを調整し、メーターが最大に示す点を求め
ます。
SSBの送信操作
手順調整が終了したら、次の手順で送信します。
① MODEスイッチをUSBまたはLSBにします。
② マイクロコンのPTTスイッチを押してマイクロコン
に送信を指示します。この時メーター指示は音声
のピークを示す準備状態のCボタン時の約1/2ぐらいとなるよ
うにMIC GAINを下げ、MIC GAINを上げると音量がぐつぐつますから上げすぎないように注意し
てください。
③ マイクロコンのPTTスイッチを離すと手順にどり
ります。

CWの送信操作
手順調整が終了したら、次の手順で送信します。
① 電解層をつないだプラグを音源のKEYソケットに接
続します。電解層は直流＋8Vをアースに接続することでキー
ングします。電解層を流れる電流は約300μAである。エレク
トリックキーパッドでランジスタスイッチを使用する場合
には電極に注意してください。
② MODEスイッチをCWにセットします。
③ CWの場面には、モニターモードでキーイン
グすると自動的に送信状態になり、キーングをやめ
て一定時間自動的に送信に切り替えます。この手順
付きの操作では、CONTROLユニークのVR3で設定
できます。
④ 通常使用する送信速度よりもスピードを下げ、間隔を
広くあけて送信するときには、字幕の間は受信にも
どることがあります。このような場合にはマイクロホ
ンのPTTスイッチを利用して送信状態を保持することが
できます。
⑤ 送信状態の1メーターは、電流を通じたときに
上り、押えたときに12DB弱のくらいになります。
⑥ キーングによりモニタ音が発生し、スピーカーで
モニタ音を確認しながらキーングをおこなうと、この
モニタ音の音量はVR3で調節できます。

キャリブレーション(ダイアル較正)操作
手順のダイアルは、選受信周波数のキャリの周波数を
指示します。USB＝L60。このため使用している
周波数が正確に変化するためにはダイアルを校正する必要
が生じます。この場合、次の手順で合わせてください。
ダイアルの校正には、VFO/FIXスイッチのいずれでも
(CW)にしてもさらに調諧可能部位を動かして行います。

SSBの場合は
① 受信操作の指示により、ダイアル較正をしない周波
数、モードで受信状態にします。
② NB/MARKスイッチをMARK(レバー下げ)にして、
内蔵マーク発振器を動作させます。
③ DIALをまわして300Hzごとにピット合がこえま
すから、ダイアルを合わせたい周波数にもっと近い
較正点(ノイズダイアル0,100,200,500,サブダイ
アル)に合わせます。
④ TUNING KNOBを下げCALIB関のカリブを左右に動か
して合わせます。

CWの場合
手順は SSBの場合と同様ですが、較正点における
サブダイアルの設定位置は次のようになります。
① 80cm以外のパッドの場合
サブダイアル目盛を0の較正点より800Hz(1目盛の
4点)低い点にサブダイアルを設定してゼロピットをと
ります。(MODE——CW)
② 80cmパッドの場合
サブダイアル目盛を、較正点より800Hz(1目盛の4点)
高い点にサブダイアルを設定してゼロピットをとりま
す。
③ CWの場合には較正周波数にダイアルを合わせると
800Hzのピット音が得られます。
FIX（固定周波数）運用と水晶発振子

FIXで運用する場合には、FIX UNITに水晶発振子を挿入し、VFO/FIXスイッチをFIXにして運用します。
（FIX用水晶は各バンドにサンプル個数で販売できます）

FIX用水晶発振子の周波数の算出

発振周波数は次のようにして求めます。

求める水晶発振子周波数…Fx

送受信周波数…………………Fs

とすると Fx = Fs + Fo で計算します。

Fx は、各バンドおよび変調方式によりさまざまな定数で第 1 表より求めます。

たとえば、7099kHzの LSB を固定周波数で送信する場合に

Fh = 60MHz、モー FLSB が変わったときの Fh は 12501.5 kHzであるから、Fx = 12501.5 + 7099 = 54611.5 kHz

また7424kHzの USB の場合には、Fx = 26498.5 –

21420 = 5078.5 kHzが求められた水晶発振子収束数となります。

こうして求めた発振周波数はVFOの発振周波数範囲、5000kHz-50000kHzの間にあるはずです。

また7099kHz用に作った水晶発振子を20MHzの帯域

に挿入すると5249kHz用となり正しい水晶発振子

の差し替えによってFIX発振数を安定させます。この場

合だと例えば、25MHzの21420kHz USB を使用するために

挿入した水晶発振子の発振周波数を変えると送信周

ぶくと7424kHzの LSB、あるいは7422kHzの USB が増

えることになります。完全にオフバンドとなります、VFO

運用と同様にこれを行なってもよいのでご注意

ください。

FIX用水晶発振子は、送信圧力に応じてPT 75W として支持をご注文をお受けいたしますので、

サービスステーションまでお問い合せください。

<table>
<thead>
<tr>
<th>BAND</th>
<th>USB</th>
<th>LSB</th>
<th>CW</th>
</tr>
</thead>
<tbody>
<tr>
<td>70m</td>
<td>8998.5</td>
<td>9000.5</td>
<td>8999.3</td>
</tr>
<tr>
<td>40m</td>
<td>12498.5</td>
<td>12501.5</td>
<td>12500.7</td>
</tr>
<tr>
<td>20m</td>
<td>19498.5</td>
<td>19501.5</td>
<td>19500.7</td>
</tr>
<tr>
<td>15m</td>
<td>26498.5</td>
<td>26501.5</td>
<td>26500.7</td>
</tr>
<tr>
<td>10mA</td>
<td>33498.5</td>
<td>33501.5</td>
<td>33500.7</td>
</tr>
<tr>
<td>10mB</td>
<td>33598.5</td>
<td>34001.5</td>
<td>34000.7</td>
</tr>
<tr>
<td>10mC</td>
<td>34098.5</td>
<td>34501.5</td>
<td>34500.7</td>
</tr>
<tr>
<td>10mD</td>
<td>34998.5</td>
<td>35001.5</td>
<td>35000.7</td>
</tr>
</tbody>
</table>

- 10 -
回路と動作のあらまし

第4図が本機のブロックダイアグラムです。
回路はプリミックス方式のシングルコンバージョンで
9MHzの中間周波数を採用しています。

受信部の回路

アンテナ端子J1に入り受信信号は、送出受信アンテナ端子KL71、バンドスイッチSW11（H）と、メトリスタ
ンスGain1×10、Gain2×10、高周波増幅、ビン①によりバンドス
イッチGain1×10とGain2×10のバンドパス通過回路に取
り出されます。

バンドパス通過回路を通った受信信号は、ミックスユニッ
ト(FB-162)のピン②に入り、送信用ディオードマイクリ
シュ15155を通過、バッファQ4、2SC355Aにより
インピーダンスを下げ、Tr3、Tr4、D3×2、D4×2で構
成するディオードオクサ四極に加えプリミックス方式によ
るローカル信号とを9MHzの受信中間周波数に変換し
ます。

D3×2、D4×2には電極面で高感度特性の良い、シット
バックダイオードBP1858Aを使用したバランス型で、広
いダイナミックレンジをもつ低不чёт系変換が行
われます。

TAUの出力は、パワーステレオルーム、コントロール、ディ
オードスイッチDB18、1S1553を通してピン⑦からFIL
TERユニット(PB-1626)のピン⑧に取り
入ります。

ピン⑦に入り受信信号は、送信出力端子と10kHzのモ
ノリシックフィルタFP1を高通経路を経て、さらに、ノイズブランクが適用された通信帯域に整形された
電圧をよりノイズブランクの動作にタイミングを合わせ
一層効果を上げています。

Q1、Q2、2SK16GRの中間周波数帯2段の中間には
ノイズブランクゲートダイオードD21、1S1007があり、
ブランクコントロール信号によりQ2、NPSA13がON/
OFFしてパワヌイエスをブランクリングします。

Q2の出力はノイズブランクゲートで取り出し
し、532フィルタFP1を通過して、送信用ディオ
ードスイッチD13、1NMを通過してピン⑧から差分ユニッ
トのピン⑧に加えます。

(IFユニット(FB-1625)に入り受信信号は、さらに
Q3、Q4、2SK40Mで2段増幅、TA2から平滑出力で取
り出しMOD/DEMユニットPB-1614を使用し、ヒン
ピン②からDB4×2、1S1007のレギュレータに取り
入れキャリ
ャを加えて平滑出力し、音声信号をピン⑦とピン⑧よりIFユニッ
トに送ります。
ノイズプランの回路

このユニットでも電流増幅方式を採用して、バンド	
このと同様の簡便で、取扱いの簡単で調査によ	
する解像度の向上に決してZepto、Zeptoに、
Cont.G3のAFファクトリーで動作の安定と性質の改善をもっ	
としています。

テスト電子ビームDiam、Zepto1で同軸フィルタのパ	
イヤス電圧の安定を3Vに変化させ、さらにCont.G3で、Qua、Zeptoに、
には、ベース電圧変容用の機能を今後も継続してZepto、Diam、Zepto1
の安定を図りつつ、さらにフィルタの使用者のための解像度と

100mの安定性を、バンビのエレベータチェックで、LDFユニット、PB-3Bで高精度の寸法を取る場合、
LDFユニット（PB-3B）のCMファイバ－ファーとRMLファブリックリ－ータをブレスアップした上で使用し、 Breaking
CMファイバ－ファーでは、強弱強弱を防ぐ。光放電し、強弱強弱が
はDiam、150000で、反発光はDiam、15000で、強弱強弱に

Diam150000で、強弱強弱を取る場合、Diam15000で、強弱強弱が

走行状態でのRML電圧は、VRoomによってDLG検出	
レールの回設状況、またアンテナサービスを受けて
BBCレールの電圧に変化した場合は、Diam、150000で、走行状態

BBCの電圧変動状況により、走行状態の安定に

Diam150000で、走行状態を安定させる。

オーバーライトによるBBC電圧、および各重の変動
によって生じる反射電圧を、A/CラインによってFIL	
TERSユニットの導入が必要で、反射電圧をのゲー	
トパルスを変形させて、オーバーライトは正常レベル
におき、重量の変動をもってドライバーを下げる

Diam150000で、信間が生じまる。

C/W通信の場合には、IPユニットの基本発振器Qua2SK
1GRBにより899．3kHzのチャネルが発振し、Qua2SK
1GRGパワーバラメータの上からFILTERユニットの7V IN端子
ビン3に入り、SSB信号と同じQua1～4の周波数を通過

ボイドユニット（PB-3B）で、Zepto、Zepto2で

Zepto、MC14681Bで構成するフィルタプロロ	
グブロックのカスを用いてキーロの操作を確認し、かつ
Qua1～4のパワーバラメータのC/Wの電流を変形し、キーロングし

Cont.G3のAFファクトリーで動作の安定と性質の改善をもっ	
FIXユニットには、QCH、2SC372Yの水晶振動子があり、各バンド1つのセントロンの水晶振動子（オプション）が装着できます。各水晶振頭に共通のトリマコンデンサのVCO, VCO1～VCO4は発振周波数の補正です。

本体の各バンドの出力は、QMU、2SC372Yでパワーワン増幅、ローバスフィルタ、ダイオードミックスを経てPRE MIXユニットに送ります。

LOCALユニット（PB-1646）

LOCALユニットでは、各部、パワーワン、15m、10mのプリミックス用のローカル信号を発生します。

水晶振頭QMU、TF1033は表3通りの水晶振頭を装備します。このうち10mバンドは10mAB用のX10ABのみが実装で、10mA、C、Dの運用には10mBの水晶振頭を装備します。

各バンドのプリミックスローカル信号はPRE MIXユニットに送られます。60mABの場合にはVFOまたはFIXの5.0MHz + 5.5MHzを使用するのでプリミックスローカル信号はありません。

<table>
<thead>
<tr>
<th>バンド</th>
<th>C2000</th>
<th>21.5MHz</th>
<th>HC-18/1-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>60m</td>
<td>10mAB</td>
<td>21.5MHz</td>
<td>HC-18/1-U</td>
</tr>
<tr>
<td>20m</td>
<td>10mAB</td>
<td>21.5MHz</td>
<td>HC-18/1-U</td>
</tr>
<tr>
<td>15m</td>
<td>10mAB</td>
<td>21.5MHz</td>
<td>HC-18/1-U</td>
</tr>
<tr>
<td>10mA</td>
<td>10mAB</td>
<td>21.5MHz</td>
<td>HC-18/1-U</td>
</tr>
<tr>
<td>10mB</td>
<td>10mAB</td>
<td>21.5MHz</td>
<td>HC-18/1-U</td>
</tr>
<tr>
<td>10mC</td>
<td>10mAB</td>
<td>21.5MHz</td>
<td>HC-18/1-U</td>
</tr>
<tr>
<td>10mD</td>
<td>10mAB</td>
<td>21.5MHz</td>
<td>HC-18/1-U</td>
</tr>
</tbody>
</table>

第3表 オプション
お手元のモーテルは出荷する前に、工場で完全に調整
し、厳重な検査をしておりますので、そのままで正常に
動作しますが、長期間ご使用いただいている間には、部
品の消耗度合などによって、多少調整を必要と変化す
ることもあります。またオブラインの時定数と
り方には通信速度や発信者などによって、所定調整の条件を
ご使用になるように再調整いただくこともあります。

各調整用のVR.T.C.Lなどの位置は写真を参照してく
ださい。

なお、送信者の調整には、必ずアンテナ端子にギミー
ロードまたはアンテナを接続して行ない、無負荷で送信
しないように注意してください。

また本機の所定調整の調整には、標準信号発生器
(SSG)・スイープメモリー(SWEEP)・オシロスコ
ープ(SCOPE)・電源オフブレバー・電源電圧計(VTVM)
などの調整器が必要となりますので、これら
関連の必要がない場合には、コイルのコア、トリマ
ーコンデンサなどには手を加えないでください。

CONTROL ユニット(PB-1622)
の調整

1. CWブリーグイン速度調整(所定時間の調整(VRr)

① キーインのモニタ音をB Petro KEYチェックに電
けんを接続し、任意のパルス、モードCWに設定しま
す。

② 電けんを押すと、リクレが働いて送信状態とな
り、キーミングともなってCW電流が通過でき
ます。

③ 送信の通信速度で、字の間、字と字の間、語と語
の間の所定速度が確かようにVR10で調整します。
VR10は時計方向にまわりますと保持時間が長くなります。

2. サイドトーンの音量調整(VR10)

キーケーの出力音がVR10で音量調整ができます
すから、キーの音度と使用条件に合った音
量に設定してください。VR10は時計方向にまわす
ほぼ音量が大きくなります。
MOD/DEMユニット（PB-1624）の調整

3. SSBキャリアポイントの調整（TCos, TCon）
LSBまたはSSBの伝送周波数特性が円弧で基準電力の6dBVとなる点にキャリア周波数を調整します。
① BAND: 20m
DIAL: 14.25MHz
MODE: CW
で送信し、TUNEを調整して最大出力を取出し
ます。
② MODEをUSBに設定し、マイクジャックのピン３とアース側に2kHzの音域を発振器出力で加えて送
信し、出力が5Wになるように発振器出力を調整しま
す。
③ 発振器出力をを変えずに周波数を300Hzに変えて出
力が2Wになるフィルタ特性の位置にキャリア発振
周波数を調整します。
④ モードをUSBの場合にはTCos, LSBの場合には、
TCosが調整済みです。（10m bandのみではUSB、
LSBが45MHzになります。）
⑤ それに送信にとどめ、RF GAINを最大にしてU
SB+LSBを切り換えて、5Wという感じのセットノ
イズの音を聴取することを確認します。

4. 通信キャリアバランスの調整（TCos, VRos）
① BAND: 20m
DIAL: 14.25MHz
MODE: CW
で送信し、マイクジャックには何も接続しませ
ん。
② VTMをアンテナ側（アンテナのホット側）
に接続し、VTMの指示が最低になるようにTCos、
VRosを交互に調整します。

6. CWキャリア発振周波数の調整（TCos）
① モードCWで送信し、TCosをまきこめて出力が最大
になるよう調整し、ビート③の出力35mV±10mVを確認
します。

7. Sメーター感度の調整（VRos）
① パワーサイド50mW、モードUSBで受信状態にし、アンテ
ナ接図にSSGを接続してSSG出力(285)の信号を加
えVRosを飽和させるメーターがフルスケールにな
るよう調整します。

IFユニット（PB-1625）の調整

MOD/DEMユニット（PB-1624）
LOCALユニットの調整

8. ロカール発振器レベルの調整（TC₁₀₀, T₂₀₀）
 1) TP₁₀₀にVTVMを接続し、バンド10m、10m用水晶フィルタに5mWの赤外線を流し出
 し、VTVMの指示が5mVになるようにT₁₀₀のコアを調整します。（以後の各バンドの調整ではコ
 アは動かさません）
 2) 10m用の水晶発振子を10mA用（43.0MHz）に交換してT₁₀₀をまわして電圧が5mVになるように調
 整します。
 3) バンドスイッチを15mにかえて、TC₂₀₀で5mV,

PRE MIXユニット（PB-1630）

10. プリモックスバランスの調整（VR₁₀）
 1) TP₁₀₀にVTVMを接続し、VFO/FIXスイッチがF
 IXにしているVTVMの表示は最小になるようVR₁₀を調
 整します。
11. 送信発電数値バンドパスフィルタの調整（TXTH～TXY）

① アンテナ端子にSWEEPの入力を、MIXユニットのQnaのエンジンにSCOPーの入力を接続します。

さらに、FPユニットを接続してAC電圧を切っておいてからRFユニットのHIN端子の⑤端子にHPアンプを接続します。ヒン⑤とヒン②間には100Ωを抵抗し入力增幅用のQ値を下げております。

② 各バンドのパワーやリ

- 30MHz～4.0MHz (TXTA,TXTHのコア内調整)
- 4.0MHz～7.0MHz (TXTA,TXTHのコア内調整)
- 7.0MHz～14.0MHz (TXTA,TXTHのコア内調整)
- 14.0MHz～21.0MHz (TXTA,TXTHのコア内調整)
- 21.0MHz～30.0MHz (TXTA,TXTHのコア内調整)

の範囲をはばフラットになるように調整します。

③ 調整が終わったらヒン⑤とヒン②間のパワーやリ

- 30MHz～4.0MHz (TXTA,TXTHのコア内調整)

ノントをはばフラットになるように調整します。

12. VFOユニット（PB-446A-1518）の調整

VFO発振器回路の調整には、高精度のゲートと検査を必要としますので、高精度の電源・温度補償回路など発振回路の動作に直接関与する部分には手を触れないようにしてください。

TCTh1 オペレーターユニットのコア内コンデンサです。

TCTh2 出力レベル調整用トリマーコンデンサです。

13. フックスユニット（PB-1620）の調整

オペレーターの設定用周波数表示器の調整です。

各バンドに1ネントを装着して検査用のsin波を入力し、40m波はTXTH10MHz、20m波はTXTH15MHz、15m波はTXTH21MHzを使用して測定値を確認します。

TCTH1 オペレーターのコア内調整用トリマーコンデンサです。

14. クラリファイアのゼロ位準調整（VRTh1）

① 機器のパネルにスロットを引くとマーカーが浮き出ます。

② CLARIFIERを中央に設定し、VFO/FIXswitchをCLARIFIERに合わせてクライマを調整してゼロポジティブにします。

③ VFO/FIXスイッチをVFO/CLARIFIERに切り換え、受信周波数を変化しないように合わせます。

④ VFO/FIXスイッチをCLARIFIERとVFOに切り換え、受信周波数が変化しないように合わせます。

⑤ クラリファイアの調整が終わったら、FPのパワーやリ端子を空気通路でショートしてみましょう。

15. 高周波周波数のトラッキング調整（TXTH1～TXTH7）

① アンテナ端子にディミッサーを接続し、

MODE……CW
DIAL ……250
TUNE……中央(同等の価値)

に設定します。

② 30MHzバンドで検査し、出力最大になるようTXTH1のコアを調整します。

③ 40MHz帯で検査し、20MHzのコアで最大出力を

20MHz帯 TXTH1
15MHz帯 TXTH1
5MHz帯 TXTH1

に調整します。
ALCユニット（PB-1637）の調整

16. 出力検出トランスのバランス調整（TCref）
① アンテナ端子にSSGを接続し、各バンドを通常の送信モードで運用、最大出力を調整します。この時ALCレベル調節のVRinsは推奨値に合わせておきます。
② VRinsをまわして反射波が最小になるまで調整しておきます。

17. ALCレベルの調整（VRins）
① 80mバンド、10mバンドを通常の送信モードで運用、最大出力を調整します。
② VRinsを反射波が最も小さい側の出力値が低下したままにしませんであれば、RFアンテナの反射波が最小になるまで調整しておきます。
③ アンテナの受信側がエクスパンダの時には、SWRが高くなり、Tinsで検出する反射波がALCラインに重なるため、反射波を0dBMにすることが必要です。
アマチュア無線局免許申請書類の書き方

工事設計書

送信機系図（JARL認定で免許申請の場合にはY-2と記入送信機系図を省略できます。）

注1：電電機のみの局は14MHz帯、およびA2は申請できません。
注2：電話機のみの局は14MHz帯およびA1は申請できません。